Buy Injection Moulding Machine
Download File ===== https://urlca.com/2tCLbN
As many of us in the machine industry are aware, Plastic Injection Molding is just as relevant and important as any other machining process. There are many things to consider when considering purchasing plastic injection molding equipment, such as: Shot Size, Tie Bar Spacing, Ejector Stroke, Platen Size, and Tonnage.
Tie Bar Spacing is defined as the space between the horizontal tie-bars on an injection molding machine. Basically, this measurement, along with the platen max spacing, determines the maximum size of molds that can be placed in the molding machine.
Simply put, Ejector Stroke is the action of the machine pushing out (ejecting) the final workpiece from the platens using ejector pins. The ejector in the molding machine pushes against an ejector plate on the mold, Ejector \"Pins\" or rods are attached to this plate and perform a pushing operation on the molded part after the plastic has hardened and the mold has opened.
At Southern Fabricating Machinery Sales, Inc. we have many Plastic Injection Molding Systems available and can assist you in selecting the right system for your part or application. Also, with equipment appraisers on staff we can help you evaluate and sell any excess plastics machinery you may have. Please call me directly at 813-444-4555 X113 to discuss your machinery needs.
The short answer: plastic injection molds cost anywhere between $100 for a 3D printed low-volume injection mold to $100,000+ for a complex multi-cavity steel mold for high-volume production, which generally represents the most significant fixed start-up cost in injection molding. However, as these costs get distributed among hundreds or thousands of parts, injection molding is an ideal process to mass-produce plastic parts affordably.
Download our white paper for guidelines for using 3D printed molds in the injection molding process to lower costs and lead time and see real-life case studies with Braskem, Holimaker, and Novus Applications.
It is a fast, intensive process where high heat and pressure are involved to inject molten material inside a mold. The molten material depends on the scope of the manufacturing project. The most popular materials are various thermoplastics, such as ABS, PS, PE, PC, PP, or TPU, but metals and ceramics can be injection molded as well. The mold consists of a cavity that accommodates the injected molten material and is designed to closely mirror the final features of a part.
Normally, the main cost driver in injection molding is the cost of the mold, also known as the tooling cost. The cost of designing and building a mold depends on the required production volume, the complexity of the part design, mold material, and the process used to create the mold.
Simple low-volume 3D printed molds can cost as little as $100, while the cost of designing and manufacturing complex molds for high-volume production may hit the $100,000 mark. Despite the considerable fixed start-up costs, the injection molding process has low variable costs due to the inexpensive thermoplastics materials, short cycle times, and the labor needs decrease progressively due to automation and economies of scale. This means that the variable costs of production are low and the process becomes more efficient and the cost per part decreases at higher volumes as the costs get distributed among hundreds or thousands of parts.
Special-purpose machines are used for injection molding that can range from smaller desktop injection molding machines that businesses can use in-house to large industrial injection molding machines that are mostly operated by service providers, contract manufacturers, and large manufacturers.
Producing low volumes of parts with injection molding is the most cost-effective with smaller desktop injection molding machines and 3D printed molds. If you are new to injection molding and are looking into testing it with limited investment, using a benchtop manual injection molding machine such as the Holipress or the Galomb Model-B100 could be a good option. Automated small-scale injection molding equipment such as the desktop machine Micromolder or the hydraulic machine Babyplast 10/12 are good alternatives for medium-series production of small parts.
Large industrial injection molding machines can cost anywhere from $50,000 to $200,000+. These machines also come with more stringent facility requirements and require skilled labor for operation, maintenance, and monitoring. As a result, unless injection molding is a core competence, most enterprises outsource mass production to service providers and contract manufacturers, in which case the equipment costs are included in the service costs.
CNC machining: CNC machines are the most commonly used tools for manufacturing aluminum and stainless steel molds with high precision levels. CNC machining removes material by a spinning tool and fixed part. Machining can produce molds where the cavity design is highly complex, but they might require multiple tool changes that can slow down the process, which means that costs increase in line with complexity. CNC machines are industrial tools that require a skilled workforce and a dedicated space, which means that many companies outsource mold production to service providers.
Electrical discharge machining (EDM): The EDM method is generally used to create highly complex mold designs that cannot be easily reproduced using standard machining methods. EDM involves the use of a workpiece and a tool electrode to create the desired mold shape. The tool electrode and workpiece electrode are separated by a dielectric fluid and subjected to voltages that cause recurring current discharges. The discharges are responsible for shaping the workpiece electrode into the final mold. EDM is highly accurate and does not generally require any additional post-processing. Similar to CNC machining, EDM is also an industrial process that many companies outsource to machine shops.
3D printing: 3D printing is a powerful solution to fabricate injection molds rapidly and at a low cost. It requires very limited equipment, saving CNC time and skilled operators for other high-value tasks in the meantime. Manufacturers can benefit from the speed and flexibility of in-house 3D printing to create molds that can be used on both desktop and industrial molding machines. Furthermore, product development benefits from the ability to iterate on the design and test the end-use material before investing in hard tooling for mass production. Stereolithography (SLA) 3D printing technology is a great choice for injection molding. It is characterized by a smooth surface finish and high precision that the mold will transfer to the final part and that also facilitates demolding. 3D prints produced by stereolithography are chemically bonded such that they are fully dense and isotropic. Desktop SLA printers, like those offered by Formlabs, start below $5,000 and can seamlessly be integrated into any injection molding workflow as they are easy to implement, operate, and maintain.
For enterprises with the equipment and tools for injection molding, choosing to create molds in-house could be the least expensive option if the technical know-how is also available. If the tools needed for injection molding are not readily available, then outsourcing reduces the cost associated with developing a mold.
The equipment associated with injection molding is generally self-regulating and relies on automation to get the job done. CNC machines, EDM machines, and 3D printers rely on the specifications of the CAD design to produce a mold. The injection molding machine also relies on automation to inject materials into the mold, and industrial IM machines often cool and eject the finished item autonomously.
Monitoring costs: Despite the reliance on automation, equipment operators are expected to monitor the progress of the injection molding process. Operator wages accrued during the process are added to the total cost of injection molding.
The table below highlights the cost associated with injection molding a hypothetical plastic item, such as a small enclosure of an electronic device, which makes the cost dynamics of injection molding easier to understand:
* Equipment costs are not calculated into the production costs in this example as the cost of these tools can be distributed among multiple projects. Purchasing a desktop injection molding machine and an SLA 3D printer allows businesses to get started with injection molding for less than $10,000.
In general, injection molding is the most efficient at higher volumes, as the costs then get distributed among thousands of parts. But even though the cost per part for low-volume injection molding is slightly higher, it is still substantially more affordable for low-volume production than other manufacturing methods.
Tooling costs for injection molding are very high and depend on a number of parameters and design complexity. Molds for injection molding are normally CNC machined out of aluminum or tool steel, EDM machined to shape a workpiece, or 3D printed. The machined or printed part is then finished to achieve the desired standard. The finished mold consists of features such as the surface geometries needed for a part, a runner system to guide the flow of injected materials, and cooling channels to ensure the mold cools down quickly.
It is important to note that a majority of the injection molding process is dedicated to cooling. The quicker a mold cools down the faster the injected material solidifies and the faster the production cycle can be repeated. Thus, cooling channels play an important role, especially for high-volume production, and should be included in the design of the mold. For low-volume production with 3D printed molds, manual cooling using compressed air is an option.
Production volume: The number of items to be produced using injection molding determines the production technology and the quality of material to use when